Measuring Center Sections 2.1, 2.2, 2.3

Lecture 5

Robb T. Koether

Hampden-Sydney College

Wed, Jan 20, 2016

- Measuring Center
- 2 The Mean
 - Using the TI-83
- The Median
 - Using the TI-83
- Comparing the Mean and the Median
- 6 Assignment

- Measuring Center
- The MeanUsing the TI-83
- Using the 11-03
- The MedianUsing the TI-83
- Using the 11-63
- 4 Comparing the Mean and the Median
- 6 Assignment

Measuring Center

- We expect the "middle" or "center" of a distribution to contain the "typical" or "representative" values in the data set.
- However, these are all vague concepts.
- We need to give them a precise meaning.
- And there is more than one way to define the middle of a distribution.

- Measuring Center
- The Mean
 - Using the TI-83
- 3 The Median
 - Using the TI-83
- 4 Comparing the Mean and the Median
- 6 Assignment

Definition (Mean)

The mean of a data set is the average, that is, the sum of all the values divided by the number of values. The symbol for the mean is \overline{x} , pronounced "x bar."

- The mean is the most common measure of center.
- If there are n values and we label them x_1, x_2, \ldots, x_n , then the mean is

$$\overline{x} = \frac{\sum x_i}{n}$$
.

• The mean is the "balancing point" of the data.

Example

Example (The Mean)

Compute the average height of the students in this class.

- Measuring Center
- The MeanUsing the TI-83
- The Median
 - Using the TI-83
- 4 Comparing the Mean and the Median
- 6 Assignment

The Mean on the TI-83

The Mean on the TI-83

- Enter the data into a list, say L₁.
- Press STAT > CALC > 1-Var Stats.
- Press ENTER. "1-Var-Stats" appears in the display.
- Type L₁ and press ENTER.
- A list of statistics appears. The first one is the mean.

Example

Example (Rainfall Data)

Rainfall data for August in Richmond, VA (1986 - 2015).

6.74	1.24	4.04	4.90	5.72	2.88
6.91	5.58	2.52	8.42	4.44	1.41
1.84	2.00	2.79	2.30	3.15	3.59
16.02	2.56	5.99	6.81	5.73	4.04
3.92	7.10	3.50	7.64	3.61	2.77

Use the TI-83 to find the mean of the rainfall data.

- Measuring Center
- 2 The Mean
 - Using the TI-83
- The Median
 - Using the TI-83
- 4 Comparing the Mean and the Median
- 6 Assignment

Definition (Median)

The median of a data set is the number in the middle of the set. If there are *n* numbers in the set, then the middle number is in position

$$\frac{n+1}{2}$$
.

If n is even, then we get a half integer which we interpret as indicating the number halfway between the middle two numbers.

- The median is a better measure of center than the mean when the data are strongly skewed.
- The median divides the data set into the lower half and the upper half; it is the halfway point.

Example

Example (The Median)

Compute the median height of the students in this class.

- Measuring Center
- 2 The Mean
 - Using the TI-83
- The Median
 - Using the TI-83
- 4 Comparing the Mean and the Median
- 6 Assignment

The Median on the TI-83

The Median on the TI-83

- Follow the same procedure that was used to find the mean.
- When the list of statistics appears, scroll down to the one labeled "Med." It is the median.

Example

Example (Rainfall Data)

Rainfall data for August in Richmond, VA (1986 - 2015).

6.74	1.24	4.04	4.90	5.72	2.88
6.91	5.58	2.52	8.42	4.44	1.41
1.84	2.00	2.79	2.30	3.15	3.59
16.02	2.56	5.99	6.81	5.73	4.04
3.92	7.10	3.50	7.64	3.61	2.77

Use the TI-83 to find the median of the rainfall data.

- Measuring Center
- Using the TI-83
- - Using the TI-83
- Comparing the Mean and the Median
- Assignment

• If the distribution is symmetric, then the mean and the median have the same value.

- If the distribution is symmetric, then the mean and the median have the same value.
- If the data are skewed in one direction, then the mean and the median are pulled in that direction, but the mean is pulled further.

- If the distribution is symmetric, then the mean and the median have the same value.
- If the data are skewed in one direction, then the mean and the median are pulled in that direction, but the mean is pulled further.
- For that reason, if the data are strongly skewed, then the median is more representative than the mean.

- Measuring Center
- 2 The Mean
 - Using the TI-83
- 3 The Median
 - Using the TI-83
- 4 Comparing the Mean and the Median
- 6 Assignment

Assignment

Assignment

- Read Section 2.1: Measuring Center: The Mean.
- Read Section 2.2: Measuring Center: The Median.
- Read Section 2.3: Comparing the Mean and the Median.
- Apply Your Knowledge: 2.1, 2.3, 2.4.
- Check Your Skills: –.
- Exercises: 2.25, 2.26.